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route, thus allowing the simultaneous existence of several wavefrobtsring the design planning process, routing estimates can be achieved
along a wire. The key in making wave pipelining a success is ensuridgring architectural explorations to assess communication overhead
that successive waveforms do not interfere. While reducing the closkce an initial floorplan is constructed. Wire widths and layer assign-
load and easing clock distribution, wave pipelining is very sensitive tnents are assumed. The early detection of communication overheads
delay, process, and temperature variations—effects that are even nadi@vs architects to explore microarchitecture tradeoffs that hide com-
pronounced for long routes. munication latencies. Once a route estimate is obtained, the RTL-level

When routing a signal between two synchronous domains clockeesign description is updated to reflect the added latency associated
by different and unrelated clocks, the critical issue that must be adlith multicycle routing and to ensure a cycle-accurate design descrip-
dressed isnetastability the clock of the latching register and the dataion that can be properly verified. The algorithms presented here could
may switch simultaneously. The register output then settles into an whso be used during back-end design to synthesize physical routes. In
defined region—neither a logical high nor a logical low. Several solthis case, the route latency has been estimated, and the algorithm de-
tions have been proposed to alleviate this problem [4], [11], [14], [18krmines the optimal buffer and synchronizer placement. The addition
The quality of the solution depends on the mean time-to-failure, whid the registers may complicate the design flow, verification, and de-
often requires an increase in latency or additional complication in te&n-for-test effort. We, however, believe that verification and testing
synchronization scheme. methodologies will evolve to accommodate the necessity of pipelined

This paper addresses two problems related to routing and bufferiogites.
in future SoC designs. The first problem seeks an optimal buffered-The remainder of the paper is as follows. Section Il presents a
routing path with synchronizer and buffer insertion within a singledetailed overview of the “fast path” algorithm. Section Il introduces
clock domain system. The objective is to minimize tiyele latencyor the single-domain routing and synchronized buffering problem and
equivalently, the total number of registers along the route. Constraistsows how to adapt the “fast path” framework to solve it. Section IV
are imposed to ensure that when a signal is latched by a register, dkierviews MCFIFO and relay station communication schemes,
resulting register-to-register delays are less than the clock period. Wereby leading into a discussion of the problem of optimal path
wish to avoid physical obstacles, to route through blocks such as datanstruction in designs realized using multiple clock domains.
paths, and to buffer the signal as needed to minimize the latency. Finally, Section V presents experimental results and we conclude with

The second problem seeks to optimize the routing within a multsection VI.
clock domain system. Here, we adopt the multidomain communication
circuitry proposed by Chelcea and Nowick [4] which buffers the signal
from one clock domain to another via a special circuit structure, a mul-
ticlock first-in/first-out structure (MCFIFQO). This MCFIFO both min- |n routing in single- and multiple-clock domains, we wish to explore
imizes points of metastability in the design and allows for bufferingl| routing and synchronizer insertion options within a given routing
(temporarily holding) data. If the MCFIFO is placed more than ongrea. Many aspects of the “fast path” algorithm [17] can be exploited
sender clock cycle away from the sender, or more than one receiugachieve this goal.
clock cycle away from the receiver, then synchronization of the routedThe fast path algorithm finds the minimum delay source-to-sink
net to the appropriate clocks is needBelay stationsfirst proposed buffered routing path, while considering both physical obstacles (e.g.,
by Carloniet al.[2], are such synchronization elements. They providgue to IP, memories, and other macro blocks) and wiring blockages
both synchronization and temporary storage to allow the correct opgs-g., data path). To model physical and wiring blockages, one may
ation of the MCFIFO. While our algorithm specifically uses the relagonstruct a grid grapl(V, E) (as in [1], [7], and [17]) over the
stations and the MCFIFO, it can be easily adopted to utilize similgbtential routing area, whereby each node corresponds to a potential
synchronization elements. Thus, our second problem considers simig$ertion point for a buffer or synchronization element, and each
taneous routing, buffer insertion, relay stations insertion, and MCFIF€dge corresponds to part of a potential route. Edges in the grid graph
insertion to achieve the minimunime latency This corresponds to which overlap with blockages are deleted, and nodes that overlap
minimizing the latency of sending data along the net when the M@hysical obstacles are labeled blocked. More precisely, we define a
FIFO is empty. label functionp : V' — {0,1} wherep(v) = 0if v € V overlaps a

Our proposed algorithms to solve these two problems are basggysical obstacle ang(v) = 1, otherwise.
on the the “fast path” framework proposed by Zhetual. [17]. The For each edgéu,v) € E, let R(u,v) andC/(u,v) denote the ca-
actual “fast path” algorithm finds a minimum delay path for a ngpacitance and resistance of a wire connectirtg v. We use uniform
while simultaneously exploring all buffering and routing solutions. Weapacitance and resistance for a given length assuming a fixed width
extend the algorithm to handle additiorsinchronizatiorelements and layer assignment. L&(g), K(g), andC(g), respectively, denote
such as registers, relay stations, and MCFIFOs while imposifige resistance, intrinsic delay, and input capacitance of a given buffer
the timing constraints required by the physical distances and tbesynchronization element These values are determined for each
communication protocol. Recent work in routing across multiple clodkuffer or synchronization element in the routing library. We use the
cycles within a single domain adopts different approachesetlal. resistance-capacitaneemodel to represent the wires, a switch-level
describe aregister/repeater block planning method during architectursldel to represent the gates, and the EImore model to compute path
floorplanning/interconnect planning stage [13]. Their method is basddlays.
on identifying feasible regions in which flip—flops and repeaters can A pathfrom nodes to ¢ in the grid graphG is a sequence of nodes
be arbitrarily inserted to satisfy both delay and cycle time constraints. = vy, v2,...,v, = #). An optimized patHrom s to ¢ is a path
Cocchini extends van Ginneken’s dynamic programming framewophus an additional labeling: of nodes in the path. We have(s) =
[16] to optimally place registers and repeaters when given a trgg m(t) = g, andm(v;) € I U {0}, wherelI is the set of buffers
routing topology [5]. Hassoun describes an adaptation to the fast pathsynchronization elements which may be inserted on a node in the
algorithm to construct a clocked buffered route using level-sensitipath between sourceand sinkt. Here, g, is the driving gate located
latches [9]. ats, g: is the receiving gate located@tand each internal nodemay

The algorithms presented here can be utilized either for interconnbetassigned a gate from the gatr to not have a gate (corresponding
planning purposes or for realizing the final routing implementatiorio m(v) = 0). A path isfeasibleif and only if p(v) = 1 whenever

Il. BACKGROUND: FAST PATH ALGORITHM
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Fast Path (G,B,s,t,m’) le |T“’ T¢ T¢
Input: G(V,E) = Routing grid graph i T il ' L.
( B?E Buffer library t L’? < — U {]—q—q—!lj s
s = source node I
t = sink node 4T,
m' = initial labeling

Vars: Q = priority queue of candidates Fig. 2. Example of the single-clock domain routing. Latency is determined by

o= (c¢,d,m,v) = Candidate at v the number of registers.
Output: m = Complete labeling of s-t path

1. 0+« {(C(m(1)),0,n,1)}.

2. while (Q+#0) do

3. (c,m,b,u) + extract_min(Q)

4. if ¢ =0 then : L L
return labeling m. ‘ L ZZ R

5. if u =s then : :
d' < d+R(m(s))-c+ K(m(s))
push (0,d’,m,u) onto Q and prune.
continue P S P

6.  for each (u,v) € E do | | SR bt =
'« c+C(u,v) FEAY : '
d' < d+R(u,v)(c+C(u,v)/2)
push (c/,d’,m,v) onto Q and prune

7. if p(v) =1 and m(u) = 0 then

¢ cifcuit bloé:kug‘es

wire blfockafges :

8. for each b € B do OO0 SO SO L b Lk
'+ C(b) Pl A
d' +d+R(b)-c+K(b)
m(u) =b Fig. 3. Example of routing within a single-clock domain.

push (c’,d',m,v) onto Q and prune

IIl. SINGLE-CLOCK DOMAIN ROUTING

Fig. 1. Fast path algorithm. - .
9 P gor We now explore the problem of finding a buffered routing path from

s to t when multiple clock cycles are required. Routing over large
m(v) € I. We assume that is initialized tom(s) = g, m(t) = g, distances in increasingly aggressive technologies will require several
andm(v) = 0forv € V — {s,t}. clock cycles to cross the die. Hence, one must periodically clock the
Let B be a buffer library consisting of noninverting buffers. signal by inserting synchronization elements (such as registers) along
The minimum-delay buffered path problem, or the “fast path,” catfe signal path. In this case, one cannot simply treat a register like a
be expressed as follows: Given arouting gréfii, F),thesef = B, buffer and add the register delay to the existing path delay in the fast
and two nodes, t € V, find a feasible optimized path frosto ¢ such path algorithm. The realizable delay between consecutive registers on
that the delay frons to ¢ is minimized. a path will always be determined by the clock period, regardless of the
This problem can be optimally solved by the fast path algorithm [1&ctual signal propagation time. Register-to-register subpaths with de-
and also by the shortest path formulation proposed by Lai and Wolags larger than the permissible clock cycle are not permitted.
[12]. The latter formulation can also be extended to wire sizing. We Letr denote the register to be used for insertibnthe clock period,
choose to extend the fast path algorithm to handle the next two formanrdSetup(r) to be the setup time far. We extend the definition of
lations since it does not require any lookup table computation andnisde labeling to permit register assignment, e(p) = r for any
likely more efficient when there is no wire sizing. nodev € V — {s,t}. We also assume that the source and sink are
The main idea behind the fast path algorithm is to extend Dijkstrasynchronization elements, so that = ¢g: = r. We define the clock
shortest path algorithm to do a general labeling based on EImore delgeriod constraint as follows: a buffer-register patteesiblef and only
Let the quadrupler = (¢, d, m, v) represent a partial solution at nodeif p(v) = 1 whenevern(v) € I and the buffered path delay between
v, wheree is the current input capacitance seen.atis the delay from consecutive registers is less than or equalie- Setup(r).
v tot, andm is a labeling for the buffered path fromto ¢. The solution Since a register releases its signal with each clock switchgthe
a1 = (c1,d1,m1,v) is said to be inferior tav, = (c2,d2, m2,v) if  pathlatencyis given byZ, x (p + 1), wherep is the number of reg-
cl > ¢2 anddl > d.. For any path frons to ¢ throughv, a buffer isters on the-t path. For example, Fig. 2 shows st path with three
assignment ofrn; from v to ¢ is guaranteed to not be better than aegisters betweer and¢, which means it takes four clock cycles to
buffer assignment of.», from v to t. Thus,«a; can be safely deleted traverse froms to ¢. Note that in the figure the consecutive registers
(or pruned) without sacrificing optimality. Pseudo-code of the fast pattave different spacings, but the delay is always measuréd, dse-
algorithm [17] is given in Fig. 1. tween registers. Fig. 3 shows an example of a buffered-register path on
The core data structure used by fast path is a priority queue of caraligrid graph with both circuit and wire blockages. The physical area
dates that keys off of the candidate’s delay value. The algorithm begocupied by a register can be different from that occupied by a buffer.
by initializing ) to the set containing a single sink candidate. Theffhe register area is a function of the underlying circuit techniques. In
candidates are iteratively deleted from theand expanded either to addition, routing the clock to the register might cause added conges-
add an edge (Step 6) or a buffer from the library (Steps 7 and 8).tibn. Our algorithm can be easily modified to allow register blockages
the source is reached, it is pushed ontodhm Step 5, and when itis that prevent inserting registers at undesirable grid points.
eventually popped from the queue, it is returned as the optimum solu-The problem of finding the minimum buffer-register path frerto
tion (Step 4). With each addition to the queue, candidates for the currém@an be stated as follows.
node are checked for inferiority and then pruned accordingly. Problem 1: Given a routing grapli+(V, E), the sel = B U {r},
If we assume that hasn vertices|E| < 4n (whichistrue foragrid and two nodes, ¢ € V, find a feasible buffer-register path frosrto ¢
graph), andB| = k, the complexity of fast path i©(n?k* log nk). such that the latency fromto ¢ is minimized.
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RBP Algorithm (G, B,s,t,m’,r,Ty)
Input: G(V,E) = Routing grid graph
B = Buffer library
s = source node
. t = sink node
m' = initial labeling with m/(s) =m/(t) =r
r = register for clocking signal
Ty = required clock period.
Vars: Q = priority queue of candidates
Q* = queue holding next candidate wave
o = (¢,d,m,v) = Candidate at v
A = Marking of registered nodes
Output: m = Labeling of complete s-t path

1. 0« {(C(r),Setup(r),m’,t)}.

=

*=0, A(v)=0,WeV
2. while (Q#0) or (Q*#0)do
Fig. 4. Example of partial routing solutions that cannot be compared for if (Q=0) then
pruning. 0=0% 0*=0.
3. (c,d,m,u) « extract_min(Q)
. . . ) . 4. if u = s then
The objective is also equivalent to minimizipgp | m(v) = r}|. d' —d+R(m(s))-c+K(m(s))
To solve Problem 1, one might initially try applying the fast path ifd <Ty then
algorithm and treat the register like a member of the buffer library return labeling m.
with the following caveat: candidates which violate the register-to-reg- | 5-  for each (u,v) €E do
ister delay constraint are immediately pruned. However, the fast path ¢ «c+Clu,v)
: X : ’ d' < d+R(u,v)(c+C(u,v)/2)
pruning scheme will not behave correctly. if d' < Ty — K(r) — min(R(BUF))c' then
Consider the two partial solutions fromto ¢ in Fig. 4. Here,d; push (c’,d’,m,v) onto Q and prune

andd, are the delays from to the first registers in the top and bottom if p(u) =1 and m(u) =0 then
paths, respectively. The top path has d&l&y + 4, , while the bottom for each b € B do

path has delaf; + d.. Since feasibility requires that both andd. C',<— C(b), m(u) =b

be no greater thad, — Setup(r), the bottom path delay is less than d' ¢ d+R(b)-c + K(b)

ifd <Ty— th
the top path delay. In addition, since there is a buffer on the bottom if dpu“sthzc,’I;/(’r,l’u)egmo Q and prune

No

path close t@, v sees less downstream capacitance on the bottom path | g if A(u) =0 and d+R(r)-c+K(r) < Ty then
than on the top path. Since the top path is inferior to the bottom path in m(u)=r, Au) =1
terms of capacitance and delay, the fast path algorithm would prune the push (C(r),Setup(r),m,u) onto Q*

candidate corresponding to the top path. However, consider continuing
the route to node on the other side of the circuit blockage framit is
certainly possible that the delay froumto v plusd. exceeds the delay
feasibility constraint, while the top path delay franto v plusd; does

not. In this case, only the top path can successfully be routed from 3) When inserting a register for a candidate at nogeis guaran-

to« while still meeting feasibility requirements. Consequently, the top  ~ tae4 to be the minimum latency candidate frorto ¢ such that

path cannot be pruned. m(v) = r. Hence, there is no need to consider other candidates
The key observation is that one should only prune subpaths by com-  with m(v) = ». We use the arrayl to mark whether a solution

paring them to other subpaths with the same number of registers. Inthe  with yu(v) = » has been generated for nodéo prevent mul-

previous example, comparing a one-register path to a two-register path  tiple candidates with registers insertedvaStep 8 only adds a
leads to an unresolvable inconsistency. Had the bottom path had two  register to an existing candidate if none already exists.
registers, then it could not have had smaller delay than the top path4) The clock feasibility constraint is checked before pushing new
Thus, one can still use the fast path algorithmic framework as long as  candidates ont® in Steps 7 and 8. This prevents solutions that

candidate propagation proceeds in waves of partial solutions wherein  can never lead to feasible solutions from further exploring the
each wave corresponds to a different number of registers. Fig. 5 shows  grid graph.

how one can adapt the fast path framework to accomplish this in thézgp roceeds by expanding all buffered-path solutions, just like fast
registered-buffered path (RBP) algorithm. path, until any further exploration violates the clock period constraint.
The primary differences between RBP and the fast path algorithi this point Q* contains several newly generated candidates all of
are as follows. which are ready for wavefront expansion from a node with an inserted
1) RBP uses a second que@¥ to store candidate solutions for register. Step 2 dumps these candidates dptand re-initializes)”
the subsequent propagation wave. When a register is added 8 #he empty set. These single-register candidates are then expanded,
candidate that is popped frofit is added ta))* and processed generating double-register candidates that are stor€d jetc. When
only after the current wave is completed. This pushing 6¥itis ~ there are no blockages, the wave-front expansion looks like Fig. 6. Of
accomplished in Step 8, whereby candidates are added only if gf#/rse, with blockages, the wave fronts are not nearly as regular.
insertion of the register satisfies the clock feasibility constraint. Let N' be the number of nodes that can be reached from a given node
2) RBP combines Steps 4 and 5 from Fig. 1 into a single Stepid.one clock cycle. When the clock period is sufficiently shdit< »,
RBP has the luxury of knowing that as soonsais reached, a the complexity of the RBP algorithm i9(nNk*log Nk). The anal-
minimum latency solution is guaranteed; hence, it can immedisis is similar to that of the fast path algorithm [17]. Since the number
ately return the solution, as opposed to pushing it back onto tbéelements in the queue can be at mG$tV %), the time required to
queue like fast path. insert an element into the queuelslog(Nk)). Because the number

Fig. 5. Registered-buffered path (RBP) algorithm.
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Sender Clock Domain ' Receiver Clock Domain

Full | '« Get Request

— Get is Valid
Put Request _____,.|
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—> Get Data

- Receiver Clock

Put Data _}

Sender Clock |

Fig. 7. Mixed clock FIFO that interfaces two different clock domains.
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register
packetIn 5 % | packetOut
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auxiliary
register
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Fig. 6. Wave-front expansion.

L ( control }

.
of insertion operations of either buffers or latches is boundedb¥?,
the complexity ig0(r N k*log(Nk)). This is a lesser time complexity StopOut | gr StopIn
than the fast path algorithm. The computational savings occurs because

we do not have to waste resources exploring the many paths that violate
the clock period constraint. This speedup can be seen in practice inﬁbg 8. Relay station.
experimental results when observing the number of configurations that
are examined as well as the run times. . . .
While our algorithm optimizes for route latency, it can be easily modf€n the receiver can request dak( Requestignal). The datais then
ified to find the minimum-latency path that maximizes the sum of tH@@de available at the receiver's next clocking edge. Geis Valid
slack at the source and at the sink. Each candidate solution will keagna! determines if the data is valid.
track of the sink slack value. When the algorithm reaches the sourcé>€cause it may take multiple sender clock cycles to route a net from
(i.e., in Step 4 in Fig. 5)all minimum-latency solutions are explored to'tS SOUce in the routing grid to the MCFIFO, and multiple receiver
find the one that maximizes the sum of the sink and source slacks. IF{Qck cycles toroute the net from the MCFIFO to the sink, signals must
also interesting to note that the RBP algorithm could be implement§ Synchronized to the clock of each domain. Chelcea and Nowick ex-
in an alternative manner. Instead of using two queues, one could {f§&d the concept of a single-domain relay station [2] to do so. These
an array of queues indexed by the number of registers. A new cargjgtions essentially allow breaking long wires into segments that_ cor-
date is then inserted into the queue indexed by the number of regist&&Pond to clock cycles and then a chain of relay stations act like a
in the solution represented by that candidate. The time complexity §ftributed FIFO.

the algorithm would not change, though this implementation uses morel "€ Single-domain relay station is shown in Fig. 8. It contains a main
memory. register and an auxiliary one. Initially, both are empty and the control

selects the main register for storing and reading the packet. When the
Stoplnsignal is asserted, the nextincoming packetis stored in the auxil-
iary registerStopOuis also asserted on the next clock cycle to indicate
A. Background that the relay station iBull and cannot further accept new data.

As mentioned in Section I, we adopt the MCFIFOs proposed bETo adapt the single-domain relay stations to interface properly with

Chelcea and Nowick [4] to route a signal between two different clodR® MCFIFO, the relay stations bundle tRet RequesandPut Data

domains. The MCFIFO is the basic entity that establishes data comrﬁﬁ-the ingoming packet, and tﬁiet iS, Validand Get I?atasignals as
nication between two modules operating at different frequencies. the outgoing packet. The full signal in the MCFIFO is used to stop the

Like all FIFOs, the MCFIFO has putinterface to the sender and aincoming flqw o_f packets. An MCFIFO and two adjacent relay stations
getinterface to the receiver. Each interface is clocked by the comnfdf© shown in Fig. 9.
nicating domain’s clock as illustrated in Fig. 7. If the full signal is not )
asserted, then the sender can request &uRequestignal) and data B: GALS Algorithm
is placed on théut Datawires. The data is latched into the FIFO at Although for the multiclock domain problem we are using the MC-
the next edge of the sender’s clock. If the empty signal is not assertBtFO and relay-stations that require bidirectional signal flow, we ab-

IV. MULTIPLE-CLOCK DOMAIN ROUTING
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Fig. 10. Example of an MCFIFO-register routing. The MCFIFO in breaks the
periods into two clock domains where the perio@’ison the source side of the
MCFIFO andT’; on the sink side. The total latency2q’s + 27.

? :
-
iz
P
P

stract the communication as being single directional. We view relay
station as a registerbecause both have similar delay properties. Given
any buffered path between relay stationsandrs, if one assumes a
single buffer type with the same delay characteristics as the register,
then the Elmore delay from; to ro is actually identical to the El-
more delay fromr, to r,. Inserting a buffer in our multiclock do-
main problem formulation actually means requiring the insertion of twgig. 11. Example illustrating routing within a multiple domain system.
buffers, one for each direction of signal flow.

Let f denote the MCFIFO element that must be inserted on tlga| modifications to RBP that must be considered to obtain the GALS
routing path 7 to be the clock period beforg andl; to be the clock algorithm.

period afterf. Fig. 10 shows an example where there are two clock pe- 1) A GALS candidate must know if the MCFIFO has been inserted,
riods between and the MCFIFO and two clock periods after the MC- S0 now we use the six-tuple = (¢, d, b, v, z,1) wherez = 0
FIFO. Since the clocks have different periods, the total latency is given & "does not contain an MCEIFO and — 1 otherwise. Let
by 27, + 2T;. _This corresponds to the signal ro_w a_ssuming an empty T(0) = T, andT'(1) = T. be a function which returns the re-
MCFIFO and ignores the worst case synchronization delay within the quired clock period for a givenvalue. The latencyis discussed
MCFIFO that is common to all routing solutions. below.

Our set of insertable elements is ndw= B U {r. f}. Foramulti- 5 ) 5 pruning takes place only with candidates with the same
clock domain source-to-sink path (an MCFIFO path), we use the fol- ~ \ 516 of .. Two candidates with opposing values ofire not
lowing conditions for feasibility: an MCFIFO path feasibleif and directly compared for pruning. Instead of storing a single list of

wire blbckzgge

only if: candidates for each grid node, now we store two lists: one for
* p(v) = 1 whenevem(v) € I; = = 0 and one for = 1. If we have not yetinserted an MCFIFO
* m(v) = f for exactly onev € V; onto the path, pruning is done with respect to the= 0 list;
* buffered path delay between consecutive registers betward otherwise, it is done with respect to the= 1 list.
f is less than or equal tB, — Setup(r); 3) Becausd, # 1}, one cannot find identical elements for wave
* buffered path delay between consecutive registers betyvaed front expansion as easily as in the single-clock domain case. In
t is less than or equal t6; — Setup(r). RBP, the number of registers obviously determined the latency.
For example, Fig. 11 shows a solution on the routing graph with asingle  For GALS, one four-register path may have lateg@y + 37
MCFIFO with latencyT, + 27T;. while another four-register path has latefigy-47; . Whichever
Thus, the multiple clock domain, buffered routing problem becomes  path has smaller latency must be explored first. Thus, the candi-
as follows. date valué stores the latency from the most recently inserted reg-
Problem 2: Given arouting grapli(V, E'), the sel = BU{r, f}, ister or MCFIFO back to the sink Just like the RBP algorithm,
and two nodes, t € V, find a feasible MCFIFO path fromto ¢ such d still stores the combinational delay from the current node to
that the latency frons to ¢ is minimized. the most recently inserted register or MCFIFO.

One can adopt a similar framework as in the RBP algorithm poten-4) The elements inQ) are still ordered byd, but the ele-
tially inserting an MCFIFO element for every candidate, wherever a  ments in Q" are ordered byl. We define the operation
register is inserted. We call this new algorithm GALS. There are sev- ) = ExtractAllMin(Q") to pull all elements off of* with
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GALS Algorithm (G, B, s, t,m’,r, f,T;,T;)

Input: G(V,E) = Routing grid graph
B = Buffer library
s = source node
t = sink node
m' = initial labeling with m’(s), m'(¢)
r = register for clocking signal
f = MCFIFO element
T; = required clock period from f to t.
T;s = required clock period from s to f.
Vars: Q = priority queue keyed by d
Q* = priority queue keyed by [
o = (c,d,m,v,z,l) = Candidate at v
Ap,A1 = Marking of registered nodes
Output: m = Labeling of complete s-¢ path

T 0+ ({7, Setup(r), m 1,0,0)).
0*=0, Ay(v)=A1(v)=0,VveV
2. while (Q#0) or (Q*#0)do
if (Q=0) then
Q = ExtractAlIMin(Q*)
continue.
3. (c;m,b,u,z,1) + extract _min(Q)
if u = s then
d' + d+R(m(s)) - c+K(m(s))
if z=1 and d' < T; then
return labeling m.
5. for each (u,v) € E do
d +c+C(u,v)
d' «— d+R(u,v)(c+C(u,v)/2)
if d’ <T(z) then
push (c’,d’',m,v,z,1) onto Q and prune
6. if p(u) =1 and m(u) =0 then
7. for each b€ B do
c « C(b), m(u)y=>b
d' + d+R(b)-c + K(b)
if d' < T(z) then
push (¢/,d',m,u,z,1) onto Q and prune
8. if A;(u) =0 and d+R(r)-c+K(r) < T(z) then
m(u)y=r, A;(u) =1
push (C(r),Setup(r),m,u,z,l+ T (z)) onto O*
9. ifz=0, F(u) =0 and d+R(f)-c+K(f) <T(z) then
m(u)=f, F(u)=1
push (C(f), Setup(f),m,u,1,l+T;) onto O*

Fig. 12. GALS algorithm.

the same latency and load them irio This operation extracts
the next wave front of elements with equal latency frérh

In RBP, the first register inserted at a grid nadprecludes the
need to insert registersafor any other path. RBP usegv) €

5)
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V. EXPERIMENTAL RESULTS

We obtained code for the fast path algorithm from the authors of
[17], then implemented RBP and GALS using this framework. The
code is written in C and was run on a Sun Solaris Enterprise 250. To
perform the experiments, we use estimated parameters for g:0.07-
technology as reported by Cong and Pan [8]. We use a single buffer
size of 100 times minimum gate width, triple wide wires, and assume
delay characteristics for the register and MCFIFO to be identical to
that of the buffer. As in [6], we use a 25 by 25 mm chip and place the
source and sink 40 mm apart. These choices ensure that a significant
number of clock cycles will be required to propagate a signal fsom
to ¢t. Qur first two experiments focus on the RBP algorithm while the
third experiment focuses on the GALS algorithm.

A. Single-Clock Domain With Varying Period

Our first experiment investigates the behavior of the RBP algorithm
as a function of the clock period. Given a grid separation of 0.125 mm
and a grid size of 208 200, we varied the number of registers that can
be placed along the path that is separated by 159 grid edges.

The results are summarized in Table I. The first data row in the
table (withT, = oo) presents the results of running the fast path al-
gorithm, where the reported latency is actually the minimum-buffered
path delay. The other rows are the results of running the RBP algorithm
with the indicated clock perioHThe clock period and latencies are re-
ported in picoseconds. The maximum and minimum register separation
is given, as well as the separation between any inserted elements (i.e.,
a register or a buffer followed by a consecutive register or buffer). We
make the following observations.

1) As the clock period decreases, the number of registers along the
path increases while the number of buffers and the maximum and
minimum register separation all decrease. However, the max-
imum and minimum separation between consecutive registers
and buffers do not consistently decrease unless the clock period
is so small that registers are inserted every one or every other
grid point.

The number of configurations investigated (i.e., candidates
popped off the queu€) in Fig. 5) decreases with decreasing
clock period. This empirically confirms that the run time
complexity of RBP becomes more efficient as the clock period
decreases, because the space of feasible wavefront expansion in
a single cycle is reduced.

Because RBP has additional overhead for register insertion, only
when the clock period drops below a certain threshold do we see
a run-time improvement over fast path, e.g., in this case it is for
T, = 463.

2)

3

~

{0, 1} to represent whether a register had been seen in a patiBatSingle-Clock Domain With Varying Grid Size

v. In GALS, we need to separate the cases of inserting a registe
beforef and afterf. Let Aq(v) € {0,1} represent whether a

register was inserted betwegrandt atv and A, (v) € {0, 1}
represent whether a register was inserted betweand f at

Next, we investigate the behavior RBP as a function of the clock

period and the grid separation. We experimented with three grid sepa-
rations: 0.5, 0.25, and 0.125 mm. We summarize the results in Table II.
The first data row for each grid size corresponds to the results of the

v. Also, let F(v) € {0,1} denote whether an MCFIFO WaStagt path algorithm, while the others represent the results of running

inserted ab.

Fig. 12 gives a template of the GALS algorithm. The main differ-
ences between GALS and RBP is the addition of Step 9 for inserting
MCFIFO elements. Just like registers in RBP, GALS considers in-

our RBP algorithm. We observe the following.

1) As the grid becomes more refined, fast path latency improves
slightly, from 2741 to 2739 ps. The improvements may be more
significant when blockages along the path are present.

serting an MCFIFO at each possible internal node as the wavefrontz) It is possible to achieve a smaller latency with a more refined

expansion proceeds. Other differences include uging to look up

grid. For example, at a clock period of 925 and a580 grid,

the current clock period constraint, returning a solution in Step 4 only

if it has an MCFIFO, and the wave-front queue mechanism of Step 2.

If N is the number of nodes that can be reachadax(7, 1), the
time complexity of GALS is0(n N k* log Nk), which is same as the
RBP algorithm.

1The seemingly odd choices for the clock period are actually the fastest clock
periods required to achieve the given number of registers (rounded to the nearest
picosecond). For exampleTa, of 686 is the fastest clock period that achieves

a three-register solution.
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TABLE |
FASTREGPATH STATISTICS AS A FUNCTION OF T,. MAX REGSER/MINREGSEP REFERS TO THEMAX/MIN NUMBER OF GRID POINTS BETWEEN SUCCESSIVE
REGISTERS MAX R/B SEP REFERS TO THEMAXIMUM GRID SEPARATION BETWEEN A REGISTER OR ABUFFER AND THE FOLLOWING REGISTER ORBUFFER ON
THIS GRID, THE NUMBER OF GRID EDGESALONG A SHORTESTPATH BETWEEN SINK AND SOURCEWAS 159

Ty || Latency | Registers | Buffers || MaxRegSep | MinRegSep | Max R/B Sep | Min R/B Sep Configs | MaxQSize | time
(Ps) (ps) (sec)
oo 27397 0 16 - - 19 18 1014896 5951 | 28.95
1371 2742 1 14 160 160 21 19 918078 19759 | 35.41
925 2775 2 14 108 104 27 17 881092 19512 | 34.84
686 2744 3 12 80 80 22 19 805603 13518 | 30.90
551 2755 4 10 64 64 23 20 755814 12558 | 29.55
463 2778 5 11 54 50 29 17 694386 9981 | 27.50
398 2786 6 7 46 44 26 18 638676 9265 | 25.46
343 2744 7 8 40 40 21 19 571877 7978 | 22.88
261 2871 10 10 30 20 20 14 468975 6193 | 19.02
84 3360 39 0 8 8 8 8 78122 1722 | 6.57
67 4288 63 0 5 5 5 5 78246 1098 | 6.59
62 4960 79 0 4 4 4 4 78278 876 | 6.63
53 8480 159 0 2 2 2 2 78360 442 | 6.55
49 15680 319 0 1 1 1 1 78416 312 | 6.44

TABLE I
RBP RERFORMANCE AS AFUNCTION OF CLOCK PERIOD AND GRID SIZE. MAX. (MIN.) SEPARATION REFERS TO THEMAXIMUM (MINIMUM ) BUFFER SEPARATION
WHEN THE CLOCK PERIOD IS o0, AND TO THE CORRESPONDINGREGISTER SEPARATION OTHERWISE

Grid Separation: 0.5mm:50x 50grid.
Period(ps) oo 1371 925 686 551 463 398 343 261 84 67 62 53 49

Registers - 1 3 3 5 6 7 7 11 39 79 79 - -
Buffers 15 14 12 12 10 6 7 8 0 0 0 0 - -
Latency 2741 2742 | 3700 | 2744 | 3306 | 3241 | 3184 | 2744 | 3132 | 3360 | 5360 | 4960 - -
Max. Sep. S 40 26 20 15 13 11 10 7 2 1 1 - -
Min. Sep. 5 40 2 20 5 2 3 10 3 2 1 1 - -

time(s) 0.41 0.70 0.76 0.69 0.73 0.70 0.68 0.61 0.59 | 042 | 038 | 0.36 - -
Grid Separation: 0.25mm:100x 100grid

Period oo 1371 925 686 551 463 398 343 261 84 67 62 53 49
Registers - 1 2 3 4 5 7 7 10 39 79 79 159 -
Buffers 16 14 14 12 10 11 7 8 10 0 0 0 0 -
Latency 2740 2742 | 2775 | 2744 | 2755 | 2778 | 3184 | 2744 | 2871 | 3360 | 5360 | 4960 | 8480 -
Max. Sep. 10 80 54 40 32 27 22 20 15 4 2 2 1 -
Min. Sep. 9 80 52 40 32 25 6 20 10 4 2 2 1 -

time(s) 3.77 5.63 5.52 5.10 4.78 4.45 4.33 3.69 3.08 1.63 1.69 | 161 1.63 -

Grid Separation: 0.125mm:200x200grid.
Period oo 1371 925 686 551 463 398 343 261 84 67 62 53 49

Registers - 1 2 3 4 5 6 7 10 39 63 79 159 319
Buffers 16 14 14 12 10 11 7 8 10 0 0 0 0 0
Latency 2739 2742 | 2775 | 2744 | 2755 | 2778 | 2786 | 2744 | 2871 | 3360 | 4288 | 4960 | 8480 | 15680

Max. Sep. 19 160 108 80 64 54 46 40 30 8 5 4 2 1

Min. Sep. 18 160 104 80 64 50 44 40 20 8 5 4 2 1

time(s) || 28.95 || 35.41 | 34.84 [ 30.90 | 29.55 | 27.50 | 2546 | 22.88 | 19.02 | 6.57 | 6.59 | 6.63 | 6.55 6.44

the latency is 3700, but itis 2775 when we use a £0®O grid. TABLE 1l

In some cases, no improvements were possible such as for clock GALS STATISTICS AS A FUNCTION OF T, AND T; WITH A GRID
periods 67 and 62 SEPARATION OF0.125 mm

3) With a coarse grid and at very small clock periods, it is impos- T, 300 T 200 1 300 | 300 | 400 | 250 | 300
sible to find a routing solution as the grid separation demands T; 300 | 300 | 200 | 400 | 300 | 300 | 250
placing registers less than one grid edge apart. The finer grid "Buffers 9 2 2 8 8 7 6
allows placing the registers closer. No solution for example is _ Reg-t 8 1 10 3 3 6 2
found At clock periods 53 and 49 for grid size @0, and for Reg-s 0 10 1 3 3 2 6

latency 3000 | 2800 | 2800 | 2800 | 2800 | 2850 | 2850

clock period 49 for grid size 10Q 100.

4) With larger clock periods, it is possible to achieve a latency
close to the optimal buffered-path delay. For example, using awe ran GALS on the same test case in the previous experiment
200x 200 grid, at all clock periods shown above 84 psitis pogysing a grid separation of 0.125 mm. Table IIl reports the number of
sible to be within one clock period from the optimal path delayffers inserted, the number of registers on the sink side of the MC-
of 2739. FIFO (Reg-t), the number of registers on the source side of the MC-
. . FIFO (Reg-s), and the latency. The relative values of Reg-t and Reg-s
C. GALS for Multiple-Clock Domains indicage V\?hezher the MCFIFwaas placed close to the so%rce orto tghe

Our final experiment explores the behavior of the GALS algorithreink. For example, wheff, = 7; = 300, the algorithm places the
for different periods of the clock domain. Given our new problem stat8CFIFO close to the source, but wh&h = 200 it places it closer to
ment, comparing to fast path is not possible. We simply illustrate resutte sink. Thus, we cannot generalize the behavior on the optimal loca-
of the technique. tion of the MCFIFO, it depends on the blockage map, clock pefigds
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andZ; and the technology parameters. For all cases, we observe that tfigs] L. P. P. P. van Ginneken, “Networks for minimal EImore deldxdc.

total latency is not significantly higher than the minimum source-sinkm] EEZEhlnt- gy";PWCiFCUiIIS EAVSLPP- 863—:62, '199(5)' |
. Zhou, D. F. Wong, I.-M. Liu, and A. Aziz, “Simultaneous routing
delay of 2739 ps (from Table ). and buffer insertion with restrictions on buffer locationdigEE Trans.
Comput.-Aided Desigrvol. 19, pp. 819-824, July 2000.

VI. CONCLUSION

Automated buffered routing is a necessity in modern very large-scale
integration design. The contributions of this paper are two new problem
formulations for buffered routing for single- and multiple-clock do-
mains. Both of these formulations address problems that will become
more prominent in future designs. Any computer-aided design (CAD)
tools currently performing buffer insertion will eventually have to deal
with synchronizer insertion. Furthermore, any SoC routing CAD tools
will have to handle routing across multiple clock domains due to the
increasing use of IPs.

We solve both problems optimally in polynomial time via the RBP  Apstract—Symmetry detection in completely specified Boolean functions
and GALS algorithms that build upon the fast path algorithm of [17is important for several applications in logic synthesis, technology map-

Experimental results validate the correctness and practicality of the tigg, binary decision diagram (BDD) minimization, and testing. This paper
algorithms for an aggressive technology. presents a new algorithm to detect four basic types of two-variable symme-
tries. The algorithm detects all pairs of symmetric variables in one pass over
the shared BDD of the multioutput function. The worst case complexity
ACKNOWLEDGMENT of this method is cubic in the number of BDD nodes, but on typical logic
synthesis benchmarks the complexity appears to be linear. The computa-
The authors would like to thank H. Zhou for supplying fast path cod®n is particularly efficient when the functions have multiple symmetries
and also to M. Thiagarajan for help with the figures and researching tieno symmetries. Experiments show that the algorithm is faster than other
background material on the MCFIFOs. knowr_1 n:jethods, and in some cases achieves a speedup of several orders of
magnitude.
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