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Optimal Path Routing in Single- and Multiple-Clock
Domain Systems
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Abstract—Shrinking process geometries and the increasing use of
intellectual property components in system-on-chip designs give rise to
new problems in routing and buffer insertion. A particular concern is
that cross-chip routing will require multiple clock cycles. Another is the
integration of independently clocked components. This paper explores
simultaneous routing and buffer insertion in the context of single- and
multiple-clock domains. We present two optimal and efficient polynomial
algorithms that build upon the dynamic programming fast path frame-
work. The first algorithm solves the problem of finding the minimum
latency path for a single-clock domain system. The second considers
routing between two components that are locally synchronous yet globally
asynchronous to each other. Both algorithms can be used for interconnect
planning. Experimental results verify the correctness and practicality of
our approach.

Index Terms—Algorithms, integrated circuit interconnection, multiple-
clock domain system, routing, signal synthesis, single-clock domain system,
system-on-chip (SoC).

I. INTRODUCTION

Three distinct trends will pose new routing challenges in future
system-on-chip (SoC) designs. First, SoCs will utilize several intel-
lectual property (IP) components, both soft and hard, like embedded
processors and memories. This aspect will allow IP reuse and it will
reduce time to market. A shortest path for a signal between two chip
components may thus be obstructed by IP blocks. Second, the drive
for higher performance will continue to push the clocking frequencies.
Third, shrinking process geometries and improvement in process
technologies allows building bigger dies. Multiple clock cycles will be
required to cross a chip. Furthermore, if the IPs are clocked at different
frequencies, as is the case with a hard IP that often has a fixed clock
period, then the signal route must cross from one time domain (of the
sender) to another (that of the receiver), latched through the proper
circuitry. In contrast to a system with a single clock, or asingle-clock
domainsystem, a system with multiple clocks is often referred to as a
multiple-clock domainsystem. The clocking scheme is referred to as
globally asynchronous locally synchronous (GALS) [3], [10].

When multiple clock cycles are needed to route a signal across a
chip clocked by the same clock or its derivative, three solutions are
possible. The first solution is combinational where the delay of the
buffered signal from sender to receiver is more than one clock cycle.
The receiver then utilizes circuitry to count a predesignated number
of cycles before latching new data. The disadvantage of this technique
is that consecutive sends cannot be overlapped and the throughput of
the channel is seriously degraded. A second solution is pipelining the
routed signal through synchronizers (edge-triggered registers or level-
sensitive latches). Buffers are inserted whenever needed to boost the
electric signal and optimize the delays in between the synchronizers.
The clock signal is routed to each of the synchronizers. The third so-
lution is wave pipelining. It eliminates one or more register along the
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route, thus allowing the simultaneous existence of several wavefronts
along a wire. The key in making wave pipelining a success is ensuring
that successive waveforms do not interfere. While reducing the clock
load and easing clock distribution, wave pipelining is very sensitive to
delay, process, and temperature variations—effects that are even more
pronounced for long routes.

When routing a signal between two synchronous domains clocked
by different and unrelated clocks, the critical issue that must be ad-
dressed ismetastability: the clock of the latching register and the data
may switch simultaneously. The register output then settles into an un-
defined region—neither a logical high nor a logical low. Several solu-
tions have been proposed to alleviate this problem [4], [11], [14], [15].
The quality of the solution depends on the mean time-to-failure, which
often requires an increase in latency or additional complication in the
synchronization scheme.

This paper addresses two problems related to routing and buffering
in future SoC designs. The first problem seeks an optimal buffered-
routing path with synchronizer and buffer insertion within a single-
clock domain system. The objective is to minimize thecycle latency, or
equivalently, the total number of registers along the route. Constraints
are imposed to ensure that when a signal is latched by a register, the
resulting register-to-register delays are less than the clock period. We
wish to avoid physical obstacles, to route through blocks such as data-
paths, and to buffer the signal as needed to minimize the latency.

The second problem seeks to optimize the routing within a multi-
clock domain system. Here, we adopt the multidomain communication
circuitry proposed by Chelcea and Nowick [4] which buffers the signal
from one clock domain to another via a special circuit structure, a mul-
ticlock first-in/first-out structure (MCFIFO). This MCFIFO both min-
imizes points of metastability in the design and allows for buffering
(temporarily holding) data. If the MCFIFO is placed more than one
sender clock cycle away from the sender, or more than one receiver
clock cycle away from the receiver, then synchronization of the routed
net to the appropriate clocks is needed.Relay stations, first proposed
by Carloniet al. [2], are such synchronization elements. They provide
both synchronization and temporary storage to allow the correct oper-
ation of the MCFIFO. While our algorithm specifically uses the relay
stations and the MCFIFO, it can be easily adopted to utilize similar
synchronization elements. Thus, our second problem considers simul-
taneous routing, buffer insertion, relay stations insertion, and MCFIFO
insertion to achieve the minimumtime latency. This corresponds to
minimizing the latency of sending data along the net when the MC-
FIFO is empty.

Our proposed algorithms to solve these two problems are based
on the the “fast path” framework proposed by Zhouet al. [17]. The
actual “fast path” algorithm finds a minimum delay path for a net
while simultaneously exploring all buffering and routing solutions. We
extend the algorithm to handle additionalsynchronizationelements
such as registers, relay stations, and MCFIFOs while imposing
the timing constraints required by the physical distances and the
communication protocol. Recent work in routing across multiple clock
cycles within a single domain adopts different approaches. Luet al.
describe a register/repeater block planning method during architectural
floorplanning/interconnect planning stage [13]. Their method is based
on identifying feasible regions in which flip–flops and repeaters can
be arbitrarily inserted to satisfy both delay and cycle time constraints.
Cocchini extends van Ginneken’s dynamic programming framework
[16] to optimally place registers and repeaters when given a tree
routing topology [5]. Hassoun describes an adaptation to the fast path
algorithm to construct a clocked buffered route using level-sensitive
latches [9].

The algorithms presented here can be utilized either for interconnect
planning purposes or for realizing the final routing implementation.

During the design planning process, routing estimates can be achieved
during architectural explorations to assess communication overhead
once an initial floorplan is constructed. Wire widths and layer assign-
ments are assumed. The early detection of communication overheads
allows architects to explore microarchitecture tradeoffs that hide com-
munication latencies. Once a route estimate is obtained, the RTL-level
design description is updated to reflect the added latency associated
with multicycle routing and to ensure a cycle-accurate design descrip-
tion that can be properly verified. The algorithms presented here could
also be used during back-end design to synthesize physical routes. In
this case, the route latency has been estimated, and the algorithm de-
termines the optimal buffer and synchronizer placement. The addition
of the registers may complicate the design flow, verification, and de-
sign-for-test effort. We, however, believe that verification and testing
methodologies will evolve to accommodate the necessity of pipelined
routes.

The remainder of the paper is as follows. Section II presents a
detailed overview of the “fast path” algorithm. Section III introduces
the single-domain routing and synchronized buffering problem and
shows how to adapt the “fast path” framework to solve it. Section IV
overviews MCFIFO and relay station communication schemes,
thereby leading into a discussion of the problem of optimal path
construction in designs realized using multiple clock domains.
Finally, Section V presents experimental results and we conclude with
Section VI.

II. BACKGROUND: FAST PATH ALGORITHM

In routing in single- and multiple-clock domains, we wish to explore
all routing and synchronizer insertion options within a given routing
area. Many aspects of the “fast path” algorithm [17] can be exploited
to achieve this goal.

The fast path algorithm finds the minimum delay source-to-sink
buffered routing path, while considering both physical obstacles (e.g.,
due to IP, memories, and other macro blocks) and wiring blockages
(e.g., data path). To model physical and wiring blockages, one may
construct a grid graphG(V;E) (as in [1], [7], and [17]) over the
potential routing area, whereby each node corresponds to a potential
insertion point for a buffer or synchronization element, and each
edge corresponds to part of a potential route. Edges in the grid graph
which overlap with blockages are deleted, and nodes that overlap
physical obstacles are labeled blocked. More precisely, we define a
label functionp : V  f0; 1g wherep(v) = 0 if v 2 V overlaps a
physical obstacle andp(v) = 1, otherwise.

For each edge(u; v) 2 E, let R(u; v) andC(u; v) denote the ca-
pacitance and resistance of a wire connectingu to v. We use uniform
capacitance and resistance for a given length assuming a fixed width
and layer assignment. LetR(g), K(g), andC(g), respectively, denote
the resistance, intrinsic delay, and input capacitance of a given buffer
or synchronization elementg. These values are determined for each
buffer or synchronization element in the routing library. We use the
resistance-capacitance�-model to represent the wires, a switch-level
model to represent the gates, and the Elmore model to compute path
delays.

A path from nodes to t in the grid graphG is a sequence of nodes
(s = v1; v2; . . . ; vk = t). An optimized pathfrom s to t is a path
plus an additional labelingm of nodes in the path. We havem(s) =
gs;m(t) = gt, andm(vi) 2 I [ f0g, whereI is the set of buffers
or synchronization elements which may be inserted on a node in the
path between sources and sinkt. Here,gs is the driving gate located
ats; gt is the receiving gate located att, and each internal nodev may
be assigned a gate from the setI or to not have a gate (corresponding
to m(v) = 0). A path isfeasibleif and only if p(v) = 1 whenever



1582 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003

Fig. 1. Fast path algorithm.

m(v) 2 I . We assume thatm is initialized tom(s) = gs; m(t) = gt,
andm(v) = 0 for v 2 V � fs; tg.

LetB be a buffer library consisting of noninverting buffers.
The minimum-delay buffered path problem, or the “fast path,” can

be expressed as follows: Given a routing graphG(V;E), the setI = B,
and two nodess; t 2 V , find a feasible optimized path froms to t such
that the delay froms to t is minimized.

This problem can be optimally solved by the fast path algorithm [17]
and also by the shortest path formulation proposed by Lai and Wong
[12]. The latter formulation can also be extended to wire sizing. We
choose to extend the fast path algorithm to handle the next two formu-
lations since it does not require any lookup table computation and is
likely more efficient when there is no wire sizing.

The main idea behind the fast path algorithm is to extend Dijkstra’s
shortest path algorithm to do a general labeling based on Elmore delays.
Let the quadruple� = (c; d;m; v) represent a partial solution at node
v, wherec is the current input capacitance seen atv; d is the delay from
v to t, andm is a labeling for the buffered path fromv to t. The solution
�1 = (c1; d1;m1; v) is said to be inferior to�2 = (c2; d2;m2; v) if
c1 � c2 andd1 � d2. For any path froms to t throughv, a buffer
assignment ofm1 from v to t is guaranteed to not be better than a
buffer assignment ofm2 from v to t. Thus,�1 can be safely deleted
(or pruned) without sacrificing optimality. Pseudo-code of the fast path
algorithm [17] is given in Fig. 1.

The core data structure used by fast path is a priority queue of candi-
dates that keys off of the candidate’s delay value. The algorithm begins
by initializing Q to the set containing a single sink candidate. Then,
candidates are iteratively deleted from theQ and expanded either to
add an edge (Step 6) or a buffer from the library (Steps 7 and 8). If
the source is reached, it is pushed onto theQ in Step 5, and when it is
eventually popped from the queue, it is returned as the optimum solu-
tion (Step 4). With each addition to the queue, candidates for the current
node are checked for inferiority and then pruned accordingly.

If we assume thatG hasn vertices,jEj � 4n (which is true for a grid
graph), andjBj = k, the complexity of fast path isO(n2k2 lognk).

Fig. 2. Example of the single-clock domain routing. Latency is determined by
the number of registers.

Fig. 3. Example of routing within a single-clock domain.

III. SINGLE-CLOCK DOMAIN ROUTING

We now explore the problem of finding a buffered routing path from
s to t when multiple clock cycles are required. Routing over large
distances in increasingly aggressive technologies will require several
clock cycles to cross the die. Hence, one must periodically clock the
signal by inserting synchronization elements (such as registers) along
the signal path. In this case, one cannot simply treat a register like a
buffer and add the register delay to the existing path delay in the fast
path algorithm. The realizable delay between consecutive registers on
a path will always be determined by the clock period, regardless of the
actual signal propagation time. Register-to-register subpaths with de-
lays larger than the permissible clock cycle are not permitted.

Letr denote the register to be used for insertion,T� the clock period,
andSetup(r) to be the setup time forr. We extend the definition of
node labeling to permit register assignment, i.e.,m(v) = r for any
nodev 2 V � fs; tg. We also assume that the source and sink are
synchronization elements, so thatgs = gt = r. We define the clock
period constraint as follows: a buffer-register path isfeasibleif and only
if p(v) = 1 wheneverm(v) 2 I and the buffered path delay between
consecutive registers is less than or equal toT� � Setup(r).

Since a register releases its signal with each clock switch, thes-t
pathlatencyis given byT� � (p + 1), wherep is the number of reg-
isters on thes-t path. For example, Fig. 2 shows ans-t path with three
registers betweens and t, which means it takes four clock cycles to
traverse froms to t. Note that in the figure the consecutive registers
have different spacings, but the delay is always measured asT� be-
tween registers. Fig. 3 shows an example of a buffered-register path on
a grid graph with both circuit and wire blockages. The physical area
occupied by a register can be different from that occupied by a buffer.
The register area is a function of the underlying circuit techniques. In
addition, routing the clock to the register might cause added conges-
tion. Our algorithm can be easily modified to allow register blockages
that prevent inserting registers at undesirable grid points.

The problem of finding the minimum buffer-register path froms to
t can be stated as follows.

Problem 1: Given a routing graphG(V;E), the setI = B [ frg,
and two nodess; t 2 V , find a feasible buffer-register path froms to t
such that the latency froms to t is minimized.
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Fig. 4. Example of partial routing solutions that cannot be compared for
pruning.

The objective is also equivalent to minimizingjfv jm(v) = rgj.
To solve Problem 1, one might initially try applying the fast path

algorithm and treat the register like a member of the buffer library
with the following caveat: candidates which violate the register-to-reg-
ister delay constraint are immediately pruned. However, the fast path
pruning scheme will not behave correctly.

Consider the two partial solutions fromv to t in Fig. 4. Here,d1
andd2 are the delays fromv to the first registers in the top and bottom
paths, respectively. The top path has delay2T�+ d1, while the bottom
path has delayT� + d2. Since feasibility requires that bothd1 andd2
be no greater thanT� � Setup(r), the bottom path delay is less than
the top path delay. In addition, since there is a buffer on the bottom
path close tov; v sees less downstream capacitance on the bottom path
than on the top path. Since the top path is inferior to the bottom path in
terms of capacitance and delay, the fast path algorithm would prune the
candidate corresponding to the top path. However, consider continuing
the route to nodeu on the other side of the circuit blockage fromv. It is
certainly possible that the delay fromu to v plusd2 exceeds the delay
feasibility constraint, while the top path delay fromu to v plusd1 does
not. In this case, only the top path can successfully be routed fromv

tou while still meeting feasibility requirements. Consequently, the top
path cannot be pruned.

The key observation is that one should only prune subpaths by com-
paring them to other subpaths with the same number of registers. In the
previous example, comparing a one-register path to a two-register path
leads to an unresolvable inconsistency. Had the bottom path had two
registers, then it could not have had smaller delay than the top path.
Thus, one can still use the fast path algorithmic framework as long as
candidate propagation proceeds in waves of partial solutions wherein
each wave corresponds to a different number of registers. Fig. 5 shows
how one can adapt the fast path framework to accomplish this in the
registered-buffered path (RBP) algorithm.

The primary differences between RBP and the fast path algorithm
are as follows.

1) RBP uses a second queueQ� to store candidate solutions for
the subsequent propagation wave. When a register is added to a
candidate that is popped fromQ it is added toQ� and processed
only after the current wave is completed. This pushing ontoQ� is
accomplished in Step 8, whereby candidates are added only if the
insertion of the register satisfies the clock feasibility constraint.

2) RBP combines Steps 4 and 5 from Fig. 1 into a single Step 4.
RBP has the luxury of knowing that as soon ass is reached, a
minimum latency solution is guaranteed; hence, it can immedi-
ately return the solution, as opposed to pushing it back onto the
queue like fast path.

Fig. 5. Registered–buffered path (RBP) algorithm.

3) When inserting a register for a candidate at nodev, it is guaran-
teed to be the minimum latency candidate fromv to t such that
m(v) = r. Hence, there is no need to consider other candidates
with m(v) = r. We use the arrayA to mark whether a solution
with m(v) = r has been generated for noder to prevent mul-
tiple candidates with registers inserted atv. Step 8 only adds a
register to an existing candidate if none already exists.

4) The clock feasibility constraint is checked before pushing new
candidates ontoQ in Steps 7 and 8. This prevents solutions that
can never lead to feasible solutions from further exploring the
grid graph.

RBP proceeds by expanding all buffered-path solutions, just like fast
path, until any further exploration violates the clock period constraint.
At this pointQ� contains several newly generated candidates all of
which are ready for wavefront expansion from a node with an inserted
register. Step 2 dumps these candidates intoQ and re-initializesQ�

to the empty set. These single-register candidates are then expanded,
generating double-register candidates that are stored inQ�, etc. When
there are no blockages, the wave-front expansion looks like Fig. 6. Of
course, with blockages, the wave fronts are not nearly as regular.

LetN be the number of nodes that can be reached from a given node
in one clock cycle. When the clock period is sufficiently short,N < n,
the complexity of the RBP algorithm isO(nNk2 logNk). The anal-
ysis is similar to that of the fast path algorithm [17]. Since the number
of elements in the queue can be at mostO(Nk), the time required to
insert an element into the queue isO(log(Nk)). Because the number
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Fig. 6. Wave-front expansion.

of insertion operations of either buffers or latches is bounded bynNk2,
the complexity isO(nNk2log(Nk)). This is a lesser time complexity
than the fast path algorithm. The computational savings occurs because
we do not have to waste resources exploring the many paths that violate
the clock period constraint. This speedup can be seen in practice in the
experimental results when observing the number of configurations that
are examined as well as the run times.

While our algorithm optimizes for route latency, it can be easily mod-
ified to find the minimum-latency path that maximizes the sum of the
slack at the source and at the sink. Each candidate solution will keep
track of the sink slack value. When the algorithm reaches the source
(i.e., in Step 4 in Fig. 5),all minimum-latency solutions are explored to
find the one that maximizes the sum of the sink and source slacks. It is
also interesting to note that the RBP algorithm could be implemented
in an alternative manner. Instead of using two queues, one could use
an array of queues indexed by the number of registers. A new candi-
date is then inserted into the queue indexed by the number of registers
in the solution represented by that candidate. The time complexity of
the algorithm would not change, though this implementation uses more
memory.

IV. M ULTIPLE-CLOCK DOMAIN ROUTING

A. Background

As mentioned in Section I, we adopt the MCFIFOs proposed by
Chelcea and Nowick [4] to route a signal between two different clock
domains. The MCFIFO is the basic entity that establishes data commu-
nication between two modules operating at different frequencies.

Like all FIFOs, the MCFIFO has aput interface to the sender and a
get interface to the receiver. Each interface is clocked by the commu-
nicating domain’s clock as illustrated in Fig. 7. If the full signal is not
asserted, then the sender can request a put (Put Requestsignal) and data
is placed on thePut Datawires. The data is latched into the FIFO at
the next edge of the sender’s clock. If the empty signal is not asserted,

Fig. 7. Mixed clock FIFO that interfaces two different clock domains.

Fig. 8. Relay station.

then the receiver can request data (Get Requestsignal). The data is then
made available at the receiver’s next clocking edge. TheGet is Valid
signal determines if the data is valid.

Because it may take multiple sender clock cycles to route a net from
its source in the routing grid to the MCFIFO, and multiple receiver
clock cycles to route the net from the MCFIFO to the sink, signals must
be synchronized to the clock of each domain. Chelcea and Nowick ex-
tend the concept of a single-domain relay station [2] to do so. These
stations essentially allow breaking long wires into segments that cor-
respond to clock cycles and then a chain of relay stations act like a
distributed FIFO.

The single-domain relay station is shown in Fig. 8. It contains a main
register and an auxiliary one. Initially, both are empty and the control
selects the main register for storing and reading the packet. When the
StopInsignal is asserted, the next incoming packet is stored in the auxil-
iary register.StopOutis also asserted on the next clock cycle to indicate
that the relay station isFull and cannot further accept new data.

To adapt the single-domain relay stations to interface properly with
the MCFIFO, the relay stations bundle thePut RequestandPut Data
as the incoming packet, and theGet is ValidandGet Datasignals as
the outgoing packet. The full signal in the MCFIFO is used to stop the
incoming flow of packets. An MCFIFO and two adjacent relay stations
are shown in Fig. 9.

B. GALS Algorithm

Although for the multiclock domain problem we are using the MC-
FIFO and relay-stations that require bidirectional signal flow, we ab-
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Fig. 9. Mixed clock FIFO and relay stations.

Fig. 10. Example of an MCFIFO-register routing. The MCFIFO in breaks the
periods into two clock domains where the period isT on the source side of the
MCFIFO andT on the sink side. The total latency is2T + 2T .

stract the communication as being single directional. We view relay
station as a registerr because both have similar delay properties. Given
any buffered path between relay stationsr1 andr2, if one assumes a
single buffer type with the same delay characteristics as the register,
then the Elmore delay fromr1 to r2 is actually identical to the El-
more delay fromr2 to r1. Inserting a buffer in our multiclock do-
main problem formulation actually means requiring the insertion of two
buffers, one for each direction of signal flow.

Let f denote the MCFIFO element that must be inserted on the
routing path,Ts to be the clock period beforef , andTt to be the clock
period afterf . Fig. 10 shows an example where there are two clock pe-
riods betweens and the MCFIFO and two clock periods after the MC-
FIFO. Since the clocks have different periods, the total latency is given
by 2Ts + 2Tt. This corresponds to the signal flow assuming an empty
MCFIFO and ignores the worst case synchronization delay within the
MCFIFO that is common to all routing solutions.

Our set of insertable elements is nowI = B [ fr; fg. For a multi-
clock domain source-to-sink path (an MCFIFO path), we use the fol-
lowing conditions for feasibility: an MCFIFO path isfeasibleif and
only if:

• p(v) = 1 wheneverm(v) 2 I ;
• m(v) = f for exactly onev 2 V ;
• buffered path delay between consecutive registers betweens and
f is less than or equal toTs � Setup(r);

• buffered path delay between consecutive registers betweenf and
t is less than or equal toTt � Setup(r).

For example, Fig. 11 shows a solution on the routing graph with a single
MCFIFO with latencyTs + 2Tt.

Thus, the multiple clock domain, buffered routing problem becomes
as follows.

Problem 2: Given a routing graphG(V;E), the setI = B[fr; fg,
and two nodess; t 2 V , find a feasible MCFIFO path froms to t such
that the latency froms to t is minimized.

One can adopt a similar framework as in the RBP algorithm poten-
tially inserting an MCFIFO element for every candidate, wherever a
register is inserted. We call this new algorithm GALS. There are sev-

Fig. 11. Example illustrating routing within a multiple domain system.

eral modifications to RBP that must be considered to obtain the GALS
algorithm.

1) A GALS candidate must know if the MCFIFO has been inserted,
so now we use the six-tuple� = (c; d; b; v; z; l) wherez = 0
if � does not contain an MCFIFO andz = 1 otherwise. Let
T (0) = Tt andT (1) = Ts be a function which returns the re-
quired clock period for a givenz value. The latencyl is discussed
below.

2) GALS pruning takes place only with candidates with the same
value ofz. Two candidates with opposing values ofz are not
directly compared for pruning. Instead of storing a single list of
candidates for each grid node, now we store two lists: one for
z = 0 and one forz = 1. If we have not yet inserted an MCFIFO
onto the path, pruning is done with respect to thez = 0 list;
otherwise, it is done with respect to thez = 1 list.

3) BecauseTs 6= Tt, one cannot find identical elements for wave
front expansion as easily as in the single-clock domain case. In
RBP, the number of registers obviously determined the latency.
For GALS, one four-register path may have latency2Ts + 3Tt

while another four-register path has latencyTs+4Tt. Whichever
path has smaller latency must be explored first. Thus, the candi-
date valuel stores the latency from the most recently inserted reg-
ister or MCFIFO back to the sinkt. Just like the RBP algorithm,
d still stores the combinational delay from the current node to
the most recently inserted register or MCFIFO.

4) The elements inQ are still ordered byd, but the ele-
ments in Q� are ordered byl. We define the operation
Q = ExtractAllMin(Q�) to pull all elements off ofQ� with
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Fig. 12. GALS algorithm.

the same latency and load them intoQ. This operation extracts
the next wave front of elements with equal latency fromQ�.

5) In RBP, the first register inserted at a grid nodev precludes the
need to insert registers atv for any other path. RBP usesA(v) 2
f0; 1g to represent whether a register had been seen in a path at
v. In GALS, we need to separate the cases of inserting a register
beforef and afterf . Let A0(v) 2 f0; 1g represent whether a
register was inserted betweenf andt at v andA1(v) 2 f0; 1g
represent whether a register was inserted betweens and f at
v. Also, let F (v) 2 f0; 1g denote whether an MCFIFO was
inserted atv.

Fig. 12 gives a template of the GALS algorithm. The main differ-
ences between GALS and RBP is the addition of Step 9 for inserting
MCFIFO elements. Just like registers in RBP, GALS considers in-
serting an MCFIFO at each possible internal node as the wavefront
expansion proceeds. Other differences include usingT (z) to look up
the current clock period constraint, returning a solution in Step 4 only
if it has an MCFIFO, and the wave-front queue mechanism of Step 2.

If N is the number of nodes that can be reached inmax(Ts; Tt), the
time complexity of GALS isO(nNk2 logNk), which is same as the
RBP algorithm.

V. EXPERIMENTAL RESULTS

We obtained code for the fast path algorithm from the authors of
[17], then implemented RBP and GALS using this framework. The
code is written in C and was run on a Sun Solaris Enterprise 250. To
perform the experiments, we use estimated parameters for a 0.07-�

technology as reported by Cong and Pan [8]. We use a single buffer
size of 100 times minimum gate width, triple wide wires, and assume
delay characteristics for the register and MCFIFO to be identical to
that of the buffer. As in [6], we use a 25 by 25 mm chip and place the
source and sink 40 mm apart. These choices ensure that a significant
number of clock cycles will be required to propagate a signal froms

to t. Our first two experiments focus on the RBP algorithm while the
third experiment focuses on the GALS algorithm.

A. Single-Clock Domain With Varying Period

Our first experiment investigates the behavior of the RBP algorithm
as a function of the clock period. Given a grid separation of 0.125 mm
and a grid size of 200� 200, we varied the number of registers that can
be placed along the path that is separated by 159 grid edges.

The results are summarized in Table I. The first data row in the
table (withT� = 1) presents the results of running the fast path al-
gorithm, where the reported latency is actually the minimum-buffered
path delay. The other rows are the results of running the RBP algorithm
with the indicated clock period.1 The clock period and latencies are re-
ported in picoseconds. The maximum and minimum register separation
is given, as well as the separation between any inserted elements (i.e.,
a register or a buffer followed by a consecutive register or buffer). We
make the following observations.

1) As the clock period decreases, the number of registers along the
path increases while the number of buffers and the maximum and
minimum register separation all decrease. However, the max-
imum and minimum separation between consecutive registers
and buffers do not consistently decrease unless the clock period
is so small that registers are inserted every one or every other
grid point.

2) The number of configurations investigated (i.e., candidates
popped off the queueQ in Fig. 5) decreases with decreasing
clock period. This empirically confirms that the run time
complexity of RBP becomes more efficient as the clock period
decreases, because the space of feasible wavefront expansion in
a single cycle is reduced.

3) Because RBP has additional overhead for register insertion, only
when the clock period drops below a certain threshold do we see
a run-time improvement over fast path, e.g., in this case it is for
T� = 463.

B. Single-Clock Domain With Varying Grid Size

Next, we investigate the behavior RBP as a function of the clock
period and the grid separation. We experimented with three grid sepa-
rations: 0.5, 0.25, and 0.125 mm. We summarize the results in Table II.
The first data row for each grid size corresponds to the results of the
fast path algorithm, while the others represent the results of running
our RBP algorithm. We observe the following.

1) As the grid becomes more refined, fast path latency improves
slightly, from 2741 to 2739 ps. The improvements may be more
significant when blockages along the path are present.

2) It is possible to achieve a smaller latency with a more refined
grid. For example, at a clock period of 925 and a 50� 50 grid,

1The seemingly odd choices for the clock period are actually the fastest clock
periods required to achieve the given number of registers (rounded to the nearest
picosecond). For example, aT of 686 is the fastest clock period that achieves
a three-register solution.
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TABLE I
FASTREGPATH STATISTICS AS A FUNCTION OFT . MAXREGSEP/MINREGSEP REFERS TO THEMAX/MIN NUMBER OF GRID POINTS BETWEEN SUCCESSIVE

REGISTERS. MAX R/B SEPREFERS TO THEMAXIMUM GRID SEPARATION BETWEEN A REGISTER OR ABUFFER AND THEFOLLOWING REGISTER ORBUFFER. ON

THIS GRID, THE NUMBER OF GRID EDGESALONG A SHORTESTPATH BETWEEN SINK AND SOURCEWAS 159

TABLE II
RBP PERFORMANCE AS AFUNCTION OFCLOCK PERIOD AND GRID SIZE. MAX. (MIN.) SEPARATION REFERS TO THEMAXIMUM (MINIMUM ) BUFFERSEPARATION

WHEN THE CLOCK PERIOD IS1, AND TO THE CORRESPONDINGREGISTERSEPARATION OTHERWISE

the latency is 3700, but it is 2775 when we use a 100� 100 grid.
In some cases, no improvements were possible such as for clock
periods 67 and 62.

3) With a coarse grid and at very small clock periods, it is impos-
sible to find a routing solution as the grid separation demands
placing registers less than one grid edge apart. The finer grid
allows placing the registers closer. No solution for example is
found At clock periods 53 and 49 for grid size 50� 50, and for
clock period 49 for grid size 100� 100.

4) With larger clock periods, it is possible to achieve a latency
close to the optimal buffered-path delay. For example, using a
200� 200 grid, at all clock periods shown above 84 ps it is pos-
sible to be within one clock period from the optimal path delay
of 2739.

C. GALS for Multiple-Clock Domains

Our final experiment explores the behavior of the GALS algorithm
for different periods of the clock domain. Given our new problem state-
ment, comparing to fast path is not possible. We simply illustrate results
of the technique.

TABLE III
GALS STATISTICS AS A FUNCTION OF T AND T WITH A GRID

SEPARATION OF0.125 mm

We ran GALS on the same test case in the previous experiment
using a grid separation of 0.125 mm. Table III reports the number of
buffers inserted, the number of registers on the sink side of the MC-
FIFO (Reg-t), the number of registers on the source side of the MC-
FIFO (Reg-s), and the latency. The relative values of Reg-t and Reg-s
indicate whether the MCFIFO was placed close to the source or to the
sink. For example, whenTs = Tt = 300, the algorithm places the
MCFIFO close to the source, but whenTs = 200 it places it closer to
the sink. Thus, we cannot generalize the behavior on the optimal loca-
tion of the MCFIFO, it depends on the blockage map, clock periodsTs,
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andTt and the technology parameters. For all cases, we observe that the
total latency is not significantly higher than the minimum source-sink
delay of 2739 ps (from Table I).

VI. CONCLUSION

Automated buffered routing is a necessity in modern very large-scale
integration design. The contributions of this paper are two new problem
formulations for buffered routing for single- and multiple-clock do-
mains. Both of these formulations address problems that will become
more prominent in future designs. Any computer-aided design (CAD)
tools currently performing buffer insertion will eventually have to deal
with synchronizer insertion. Furthermore, any SoC routing CAD tools
will have to handle routing across multiple clock domains due to the
increasing use of IPs.

We solve both problems optimally in polynomial time via the RBP
and GALS algorithms that build upon the fast path algorithm of [17].
Experimental results validate the correctness and practicality of the two
algorithms for an aggressive technology.
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Fast Computation of Symmetries in
Boolean Functions

Alan Mishchenko, Member, IEEE

Abstract—Symmetry detection in completely specified Boolean functions
is important for several applications in logic synthesis, technology map-
ping, binary decision diagram (BDD) minimization, and testing. This paper
presents a new algorithm to detect four basic types of two-variable symme-
tries. The algorithm detects all pairs of symmetric variables in one pass over
the shared BDD of the multioutput function. The worst case complexity
of this method is cubic in the number of BDD nodes, but on typical logic
synthesis benchmarks the complexity appears to be linear. The computa-
tion is particularly efficient when the functions have multiple symmetries
or no symmetries. Experiments show that the algorithm is faster than other
known methods, and in some cases achieves a speedup of several orders of
magnitude.

Index Terms—Binary decision diagrams (BDDs), Boolean functions, re-
cursive procedures, symmetric variables, symmetry, zero-suppressed bi-
nary decision diagrams (ZBDDs).

I. INTRODUCTION

The problem of symmetry detection in Boolean functions has a
long history and many applications, such as functional decomposition
in technology-independent logic synthesis [6], [9], [11], Boolean
matching in technology mapping [12], [13], and binary decision
diagram (BDD) minimization [21].

Early methods to detect symmetries are based on checking the
equality of two-variable cofactors of the functionF01 = F10 and
F00 = F11. Decomposition charts [18] and truth tables [4] have been
used to compute and compare cofactors. Representing functions using
BDDs [1] improved the efficiency of cofactor computation. However,
computing multiple cofactor pairs is still expensive for large functions
because repeated cofactoring leads to creating and deleting a large
number of intermediate BDD nodes. In this paper, cofactor checking
is referred to as thenaïve methodto detect symmetries.

To bypass the cofactor computation, recent more sophisticated
approaches use dynamic BDD variable reordering [19], generalized
Reed–Muller forms [23], and analysis of shared BDDs [16]. The latter
approach was recently successfully applied to BDD minimization in
[21].

Here we review the symmetry detection algorithm described in [16]
and [21] as the most computationally efficient. This algorithm is based
on the observation that the absence of symmetry between a pair of
variables can, in many cases, be discovered without computing and
comparing the cofactors. To prove the absence of symmetry counting
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